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Permeability and conductivity of platelet-reinforced membranes and composites
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We present large-scale simulations of the diffusion constantD of a random composite consisting of aligned
platelets with aspect ratioa/b@1 in a matrix ~with diffusion constantD0) and find thatD/D051/(11c1x
1c2x2), wherex5av f /b and v f is the platelet volume fraction. We demonstrate that for large aspect ratio
platelets the pair term (x2) dominatessuggesting large property enhancements for these materials. However, a
small amount of face-to-face ordering of the plateletsmarkedly degradesthe efficiency of platelet reinforce-
ment.

DOI: 10.1103/PhysRevE.66.020802 PACS number~s!: 81.05.Qk, 66.30.Pa, 87.53.Wz
a
o

n
er
o
-
rs

is
e
e

lu
um
-

m

-

at

w
gle

d
3.
a
e
ly
ta
re
us

o
t

g

st

ity
tes
ll

al

-

d in

ts
nc-

the
wo

uc-
a

ct
on
Thin reinforcing platelets can be extremely effective
improving the barrier and in-plane mechanical properties
composites and membranes. In particular there has bee
explosion of interest in clay-reinforced thermoplastics, th
mosets, and rubbers, with target applications ranging fr
packaging to cars@1–5#. To achieve the theoretically prom
ised enhancements requires well-aligned and well-dispe
clay platelets in these polymer matrices.

The traditional theory of composite reinforcement
based on single-inclusion theories that form a basis for s
consistent or effective-medium approximations. Howev
the effect of aligned reinforcing platelets isnot correctly de-
scribed by single-inclusion models, except at very low inc
sion concentrations, even though many publications ass
this approximation@6,7#. The correct variable to use in de
scribing platelet reinforcement in the large aspect ratio li
is the product of the aspect ratio (a/b) times the volume
fraction (v f), x5av f /b. Since the aspect ratio of clay plate
lets ranges from 100–2000,x is typically not small as even a
1% inclusion volume fraction leads to large values ofx. We
calculate the diffusion constant in regimes wherex is not
small @8,9# and derive a simple form that represents the d
well. We find that thequadratic termdominates~i.e., a term
proportional tox2) and its dominance is due to the narro
necks between platelets that are not included in sin
inclusion theories.

However, chemically nanodispersed clay platelets ten
order themselves face-to-face into stacks as seen in Fig.
a thermodynamic picture this corresponds to a phase sep
tion of the material into platelet rich and platelet poor r
gions. In the platelet poor regions the diffusion is relative
easy. We calculate the dependence of the diffusion cons
on face-to-face alignment and show that the rule of mixtu
works effectively. In clay-polymer materials deleterio
platelet-poor regions are broken up by using extrusion
mechanical mixing. To date no one has found a way
chemically modify the clays so that they prefer to arran
themselves in a more optimal~e.g., staggered! array. Never-
theless, theoretical studies suggest that nematic and
gered phases can be thermodynamically stable@10#.
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The leading-order term in the reduction in permeabil
due to platelet reinforcement is familiar in the composi
community, though in a different context. There it is we
known that a number density of aligned cracks,n5N/V (N
is the number of cracks andV is the sample volume!, reduces
the conductivity of a material of initial conductivitys0 ac-
cording to

s5s0~12pa2n1••• ! ~1!

for slits of length 2a in a homogeneous two-dimension
medium@11#, and

s5s0S 12
8

3
a3n1••• D ~2!

for penny-shaped cracks of radiusa in a homogeneous three
dimensional medium@12#. The perpendicular~i.e., normal to
the crack surface! conductivity of cracked solidss/s0, the
perpendicular permeability,k/k0, of platelet-reinforced mem-
branes and the perpendicular diffusion constant measure
platelet-reinforced membranes,D/D0, are related bys/s0
5k/k05D(12v f)/D0. However, the experimental resul
for the permeability of barrier films are presented as a fu
tion of inclusion volume fractionv f . This is derived simply
from Eqs. ~1! and ~2! by using v f5nv* , wherev* is the
volume of an inclusion. Thus for barrier membranes,
leading-order behavior for aligned rectangular sticks in t
dimensions (v* 54ab) is

k

k0
512

p

4

av f

b
1•••, ~3!

and for aligned penny-shaped platelets of radiusa and thick-
ness 2b is,

k

k0
512

4

3p

av f

b
1•••. ~4!

The importance of the variablex5av f /b is evident from
these expresssions. In the barrier film community the red
tion in permeability due to platelets is approximated in
different way @6,7#. There it is argued that for high aspe
ratio platelets, the increased tortuousity of typical diffusi
©2002 The American Physical Society02-1
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pathsLp /L0 gives the qualitatively correct reduction in th
diffusion constant, i.e.,D/D0;L0 /Lp . The dependence o
path tortuousity on inclusion volume fraction is given b
Lp /L05(11av f /2b), wherea/b is the platelet aspect ratio
Note that this is of the same form as an effective-medi
theory based on Eqs.~3! and~4!. However, as we now show
this tortuousity argument isqualitatively incorrect for
platelet-reinforced materials and if done correctly leads t
quadratic@i.e., O„b/(av f)…

2] reduction in the diffusivity in
both two and three dimensions.

We use the resistor respresentation to calculate the e
of tortuous diffusion paths on the overall conductivity, pe
meability, and diffusivity. Consider a composite composed
randomly centered, aligned, nonoverlapping, insulat
sticks or pennies placed in a matrix of conductivitys0. We
define the typical perpendicular distance between inclus
to be l. The volume fraction is related tol via, v f'2b/( l
12b)'2b/ l as the inclusion volume fractions that are o
served for high aspect ratio materials are typically less t
10%. A tortuous path through a random array of the
aligned platelets is approximated by a series combinatio
resistors each of which has the typical resistance

r t'
r0a

lad22
, ~5!

wherer051/s0. This resistance is calculated by consideri
a ‘‘neck’’ of matrix material between two adjacent inclu
sions. This resistor has a typical length of ordera ~we drop
constant prefactors! and cross section of orderlad22. In a
film of thicknesst, the resistance of a tortuous path is th
Rt5r t„t/( l 12b)…'r0ta32d/ l 2. In a composite of transvers
dimensionLt ~perpendicular to the thickness direction!, how-
ever, there are many parallel paths of this sort and their c
ductances must be added to approximate the overall pe
ability or conductivity. The typical number of such paths
(Lt /a)d21, so that the typical resistance of a composite
dimensionsLt

d21t is Rf'r0ta32d/(Lt /a)d21l 2. We are in-
terested in the conductivity (} permeability! which is related
to the resistance bys5t/Rf(Lt)

d21. Usingv f5b/ l , we thus
find

s's0S b

av f
D 2

5s0

1

x2
. ~6!

This result is due to the necks between platelets and is th
pair term and is not included in single-inclusion theorie
Note that if the matrix conductivity was dependent on t
neck width, as might occur if there was enhanced trappin
diffusants in the necks, their effect could be easily incorp
rated in the sum of effective resistors along a typical path
order to find a typical value for the prefactor of the quadra
term, and to compare its importance with the linear te
found from single-inclusion theories@Eq. ~3! and ~4!#, we
have carried out large-scale simulations. To compare
above theory with the simulations, we need to include b
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the leading-order term@Eq. ~3! and ~4!# and the quadratic
term~6! in our analysis. The simplest form that contains bo
of these terms is

D

D0
5

1

11c1x1c2x2
, ~7!

where x5av f /b. As we show below, this form works ex
tremely well for aligned non-overlapping, well-disperse
platelets over a broad range of concentrations. Important
rections occur if the platelets stick to each other or if t
platelets overlap~i.e., percolation effects! and we shall
present the details of these effects elsewhere.

Our calculation of the effective diffusivity of clay
reinforced membranes is carried out as follows. Clay pla
lets act as effective diffusion barriers to molecules such
oxygen and water, so we assign them diffusion constant z
In contrast, many polymers are oxygen and water perme
so we assign the matrix a finite diffusion constantD0. We
calculate the effective diffusion constant of a polymer co
taining volume fractionv f of aligned platelets, as illustrate
in Fig. 1. The effective diffusion constant of these compo
ites is found by embedding the geometry in large square
cubic lattices. Random walkers are then started at rand
locations in these geometries. The end-to-end distance
these walkers is monitored as a function of time. Averag
the trajectories leads to the average diffusive behavior^r 2&
}Dt. The effective diffusion constant is then found by e
tracting the slope of a plot of̂r 2& versust. Our code for the
‘‘blind ant’’ @13# method described above is very efficien
which enables simulations on very large lattices over lo
times. This is essential for the large aspect ratio compos
discussed here. Note thatk/k05D(12v f)/D0 due to the fact
that random walkers cannot be placed on the zero perme
ity barriers. In experiments, the permeability is measured
placing the barrier in a pressure gradient, with pressurep of
gas ~e.g., Oxygen! on one side of the membrane and t
other side maintained at a very low pressure. The stea
state flux of gas,f, through the membrane is measured a

FIG. 1. Aligned square platelets randomly embedded in a th
dimensional cube. The aspect ratioa/b525, the boundary condi-
tions are periodic in all directions.
2-2
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the permeabilityk5p/ f . The diffusion constant is measure
by tracking the tracer diffusion of tagged particles, for e
ample, using NMR.

A high-precision test of Eq.~7! is presented in Fig. 2~a!
for the sticks aligned in two dimensions and Fig. 2~b! for the
squares aligned in three dimensions. We plot the quan
(D0 /D21)/x which, if Eq. ~7! is correct, should be linear
i.e., (D0 /D21)/x5c11c2x. The data of Fig. 2 confirms
this form remarkably well over the entire range of inclusi
concentrations, even close to the dense packing limit. A
ear fit to the data of Fig. 2 yields the coefficients to t

FIG. 2. Tests of the form~7! of the text. A plot of (D0 /D
21)/x as a function ofx5av f /b, wherea/b is the platelet aspec
ratio andv f their volume fraction. The solid lines are fits to th
largest aspect ratio data.~a! Data for aligned slits randomly placed
without overlap, onto a square lattice. The simulations were car
out on square lattices of size 20482, over 63104 steps in the blind
ant algorithm~see text! and averaged over 30 000 configuration
~b! Data for aligned squares~see Fig. 1! placed, without overlap,
onto a cubic lattice. The simulations were carried out on cu
lattices of size 5123, over 53104 steps in the blind ant algorithm
~see text! and averaged over 20 000 configurations.
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quadratic term,c2
2d50.16560.01 @from Fig. 2~a!#, and c2

3d

50.05060.005 @from Fig. 2~b!#. The leading-order coeffi-
cient in the concentration expansionc1 is quite poorly con-
verged in two dimensions. From Fig. 2~a!, it is seen that this
c1

2d is still decreasing even for large aspect ratio platele
For the largest aspect ratios we studied its value isc1

2d(a/b
5250)50.4660.01. In three dimensions the convergence
much better and we findc1

3d50.4460.03. The theoretica
values @from Eqs. ~3! and ~4!# are c1

slit5p/450.785 . . . ,
andc1

penny54/(3p)50.425 . . . , respectively. The numerica
simulations are on lattices and so cannot be expected t
exactly the same as the continuum results~3! and ~4!. Nev-
ertheless, it is clear that materials reinforced by we
dispersed platelets arenot correctly described by effective
medium theory based on a linear expansion inx, or the
Nielsen formula@D/D051/(11x/2)# which is used in the
diffusion community@6,7#. An important consequence of thi
result is that the property enhancements that are theoretic
possible from platelet-reinforced materials, for examp
clay-polymer nanocomposites, aremuch largerthan has pre-
viously been suggested or observed.

The real morphology of, as synthesized, clay-polym
materials is illustrated in Fig. 3@14#. The strong face-to-face
packing of the platelets and the presence of large plate
free regions of the matrix material is evident. These mater
do not provide the barrier performance promised by the
sult Eq.~7!. The platelet-free regions of the matrix materi
form channels at a larger length-scale and act as a diffu
‘‘short-circuit’’ so that the effective diffusion constant of th

d

.

c

FIG. 3. Experimental platelet morphology at two length scal
~a! The upper figure shows that there is a phase separation
platelet rich and platelet poor regions.~b! The lower figure illus-
trates the face-to-face alignment of the platelets. The dark reg
are clay, the light regions are the polymer~from Ref. @14#!.
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composite remains closer to that of the pure matrix mate
In order to make the diffusion paths through the matrix m
terial more tortuous, materials such as this are mixed in
truders or sheared in other ways in order to produce be
platelet dispersion. A simple model for various degrees
platelet phase separation on the diffusion constant is il
trated in Fig. 4. The platelets are initially in a perfectly sta
gered array and then one sublattice of the array is shifted
an amount 0<s<a until the platelets are in a perfect fac
to-face arrangement. Clearly, even a small amount of ph
separation~finite s) yields higher permeability. In fact a care
ful study of this effect indicates that if the reduction in d
fusion constant promised by the formula~6! is 1000-fold,
matrix channels of size 1/1000 or larger will be deleterio
for the composite performance. This means that platelet
persion must be very good indeed to achieve the full per
mance enhancements promised by large aspect ratio p
lets. Note that if there was a distribution of channel sizes
a distribution of platelet sizes, as would occur in most r
materials, their effect is well approximated by treating t
channels as a parallel set of resistors.

In summary, we have shown that the effective diffusi
constant~as well as the conductivity and permeability! of
platelet-reinforced composites is not well described
single-inclusion theories, even though almost all experim
tal studies in the literature use expressions that are base
this limit. This is good news, as it means that the theor
cally possible property enhancements arequadratic in the
volume fraction, rather than linear. This general result sho
also apply to many other transport and mechanical prope
of well-dispersed platelet reinforced materials, and is due
the dominance of narrow necks in large aspect ratio lim
However, we also showed that face-to-face platelet orde
is extremely deleterious to the performance of these ma
als ~see Fig. 4!, so that achieving the full enhancemen
promised by these materials remains a challenging synth
problem.
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FIG. 4. The effective diffusion constant as a function of fac
to-face alignment of the platelets. The inset shows one of the
ometries that was used for the calculations. The aspect ratioa/b is
fixed at the value of 128. The ratios/a changes from 0 to 1 using a
stepsize of 1/4.s/a50 corresponds to the staggered arrangemen
the platelets, whiles/a51 corresponds to the configuration consis
ing of straight columns of face-to-face ordered platelets and stra
platelet-free channels. The width of the matrix channel iss. The
inset shows the configuration fors/a51/2. Also included are the
data for a random system with the same aspect ratio and they s
that the random system is not significantly different from the p
fectly staggered array of barriers. The three plots at intermed
s/a ~dots, small dashes, and large dashes! are interpolations be-
tween thes/a50 ands/a51 values using the rule of mixtures.
on-
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